Chapter 22

Plant Form and Function

OGustavo Gilabert/Corbis SABA

Introduction: vegetative plant parts

If asked to picture a plant, you probably wouldn't think of unusual examples like a Venus flytrap or a barrel cactus.

Carnivory
(Venus flytrap)
© Win Initiative/Getty Images RF

Water storage (cactus)

Vegetative plant parts

But like other flowering plants, these have roots, stems, leaves, flowers, fruits, and seeds.

Carnivory
(Venus flytrap)
© Win Initiative/Getty Images RF

Water storage (cactus)
©G.C. Kelly/Science Source

Vegetative plant parts: modified leaves

Harsh environments have selected for adaptions in these plants, such as modified leaves.

Vegetative plant parts = nonreproductive plant parts

This chapter explores the anatomy and physiology of vegetative (nonreproductive) plant parts.

Carnivory (Venus flytrap)
© Win Initiative/Getty Images RF

Water storage (cactus)
©G.C.Kelly/Science Source

Naming the vegetative plant parts

Vegetative plant parts include stems, leaves, and roots. These organs work together.

Vegetative plant parts: the shoot

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

The shoot is the aboveground part of the plant.

Vegetative plant parts: the stem

The shoot's stem supports the leaves, which produce carbohydrates by photosynthesis.

Vegetative plant parts: the roots

Some of the sugar produced in the shoot system travels through the stem to the roots, which are usually below ground.

Vegetative plant parts: functions of

 rootsRoots anchor the plant and absorb water and minerals that move via the stem to the leaves.

Later, we will explore how water, minerals, and sugars travel through plants.

Vegetative plant parts: nodes and

 internodesLeaves attach to stems at nodes. Spaces between nodes are internodes.

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Vegetative plant parts: axillary buds

Each node also features an axillary bud, an undeveloped shoot that could form a new branch or flower.

Two types of plants

Biologists divide plants into two categories based on the characteristics of the stem.

Herbaceous and woody plants

A herbaceous plant has a green, soft stem.

A woody plant is made of tough, barkcovered wood.

Vegetative plant parts: specialized stems

Natural selection produces stems, leaves, and roots with various forms.

(a, vine): ©Franz Krenn/Science Source; (a, iris): ©Dwight Kuhn; (a, cactus): ©G.C. Kelly/Science Source; (a, thorns): ©Kenneth W. Fink/Science Source

Vegetative plant parts: specialized leaves

Natural selection produces stems, leaves, and roots with various forms.

b. Specialized leaves

Nutrient storage (onion)

Pollinator attraction (poinsettia)

Carnivory (Venus flytrap)

Asexual reproduction
(kalanchöe)
(b, onion): ©YAY Media AS/Alamy RF; (b, poinsettia): ©Design Pics/Don Hammond RF; (b, flytrap): © Win Initiative/Getty Images RF; (b, kalanchoe)

Vegetative plant parts: specialized roots

> Natural selection produces stems, leaves, and roots with various forms.
c.Specialized roots

Nutrient storage (carrot)

Oxygen absorption (mangrove trees)

Photosynthesis (orchid aerial roots)

Support
(prop roots of screw pine)
(c, carrots): ©Huw Jones/Photolibrary/Getty Images; (c, mangrove): ©Tim Laman/Getty Images RF; (c, orchid): ©Settawut Visedbubpha/123R; (c, screw pine): ©Steven P. Lynch/McGraw-Hill Education

Clicker question \#1

Roots depend on shoots because shoots
 \qquad , which is transported to the roots.

A. absorb water
B. absorb O_{2}
C. produce sugar
D. release CO_{2}
E. All of the choices are correct.

Clicker question \#1, solution

> Roots depend on shoots because shoots
> \ldots, which is transported to the roots.
C. produce sugar

22.1 Mastering concepts

What are the major parts of the plant body?

Plant cells build tissues

We've seen the organs and organ systems of plants. Now let's zoom in and learn about the cells and tissues that make up these organs.

Three main tissue types

Plants have three main tissue types:

- Ground tissue makes up most of the plant body.
- Vascular tissues (xylem and phloem) transport materials within the plant.
- Dermal tissue covers the plant.

Ground tissue

Ground tissue consists of
Collenchyma three main cell types: parenchyma, collenchyma, and sclerenchyma.

Cell Type	Description	Alive at Maturity	Functions	
Parenchyma	- Most abundant cell type in primary plant body - Thin primary cell walls - Unspecialized - Can divide at maturity	Yes	Make up most nonwoody tissues; carry out photosynthesis, respiration, gas exchange, secretion, wound repair, and storage	
Collenchyma	- Elongated cells - Unevenly thickened primary cell walls	Yes	Elastic support for growing stems and leaves	
Sclerenchyma: Fiber	- Long, slender cells - Thick secondary cell walls high in lignin	No	Inelastic support for nongrowing plant parts	
Sclerenchyma: Sclereid	- Variable shapes, generally not elongated - Thick secondary cell walls high in lignin	No	Inelastic support for nongrowing plant parts	

Functions of ground tissue

The cells that compose ground tissue are important sites of photosynthesis, respiration, storage, and support.

Vascular tissue

Vascular tissues
transport water,
minerals, carbohydrates,
and other dissolved
compounds.

Vascular tissue: xylem

Xylem tissue transports water and minerals from the roots to other plant parts. It consists of long, narrow cells called tracheids and wide, barrel-shaped cells called vessel elements.

Vascular tissue: phloem

Phloem tissue transports dissolved organic compounds like sugars. Sieve tube elements are the conducting cells; they are separated by sieve plates.

Cell Type	Functions
XYLEM	Conduct water and minerals through pits
Tracheid	Conduct water and minerals through pits and perforated end walls
element	Conduct dissolved
PHLOEM	Sucrose and other organic compounds through sieve plates
Sieve tube	Transfer materials
Compant	
into and out of	
sieve tube elements	

Vascular tissue: phloem cells

Companion cells transfer materials in and out of sieve tubes.
Cell Type
XYLEM
Tracheid element

PhLOEM
Sieve tube element

Companion cell

Functions

Conduct water and minerals through pits

Conduct water and minerals through pits and perforated end walls

Conduct dissolved sucrose and other organic compounds through sieve plates

Transfer materials into and out of sieve tube elements

Dermal tissues

Dermal tissue covers the plant; it consists of the epidermis, which is coated with a waxy cuticle.

OSteven P. Lynch/McGraw-Hill Education

Cuticle and stomata

The cuticle conserves water and protects the plant. Pores in the cuticle, called stomata, allow leaves to exchange gases with the atmosphere.

©Steven P. Lynch/McGraw-Hill Education

Guard cells

Guard cells surround each stoma and control its opening and closing.

Figure 22.8

Clicker question \#2

If you cut a stalk of celery and put the bottom of it in a glass of water containing red food coloring, the next morning the celery will be red. The food coloring is taken up through the
A. phloem.
B. stomata.
C. xylem.
D. epidermis.
E. ground tissue.

Clicker question \#2, solution

If you cut a stalk of celery and put the bottom of it in a glass of water containing red food coloring, the next morning the celery will be red. The food coloring is taken up through the
C. xylem.

22.2 Mastering concepts

What are the functions of dermal tissue and vascular tissue?

Tissues build stems, leaves, and roots

The three tissue types make up the stems, leaves, and roots of the plant.

Let's look at each of these organs, starting with the stem.

Tissue types found in a stem

Ground tissue occupies most of the stem of a herbaceous plant.

Vascular bundles are embedded in the ground tissue.

Dermal tissue covers the stem.

Arrangement of tissues differs in monocots and eudicots

Monocots and eudicots have different arrangements of vascular tissue and ground tissue in their stems.

(a, stem): ©Steven P. Lynch/RF; (a, corn close up; b, both): OSteven P. Lynch/McGraw-Hill Education

Vascular bundles in monocot and eudicot stems

In monocots, vascular bundles are scattered throughout the stem.

In eudicots, vascular bundles are arranged in a ring near the epidermis.

The cortex is ground tissue that fills the space between the epidermis and vascular bundles. The pith occupies the center of the stem.

b. Sunflower (eudicot)

(a, stem): OSteven P. Lynch/RF; (a, corn close up; b, both): OSteven P. Lynch/McGraw-Hill Education

Tissues found in leaves

Ground tissue occupies most of a leaf.

Vascular bundles are embedded in the ground tissue.

Dermal tissue covers the leaf.

The structure of leaves

Leaves are flattened blades supported with a stalklike petiole.

Simple vs. compound leaves

Simple leaves have undivided blades.
 Compound leaves are divided into leaflets attached to one petiole.

Vein patterns on monocot and eudicot leaves

Veins are vascular bundles inside leaves. Many monocots have parallel veins; most eudicots have netted veins.

Mesophyll: the middle of a leaf

Leaf anatomy shown here is that of a eudicot plant.

The ground tissue inside a leaf is called mesophyll, which consists of cells with abundant chloroplasts that produce sugars by photosynthesis.

Stomata: locations of gas exchange

When stomata are open, mesophyll cells exchange gases with the atmosphere.

Mesophyll cells interact with vascular

 tissueMesophyll cells also exchange materials with vascular tissues.

Monocot leaf structures

Monocots have similar leaf anatomy to dicots. Note the prominent bundle sheath cells in this monocot leaf, surrounded by a layer of mesophyll.

Tissues of the root

In a root, ground tissue surrounds a central core of vascular tissue.

Dermal tissue forms the root epidermis.

Fibrous roots vs. taproots

Roots might form a fibrous root system or a taproot system.

- Fibrous roots are slender, shallow, and arise from the base of the stem.
- Taproots are thick, deep, and have fewer branches than fibrous roots.

(a): ©AI Telser/McGraw-Hill Education; (b): ©Ed Reschke/Photolibrary/Getty Images

Root hairs

Near each root's tip, root hairs are extensions of the epidermis that absorb water and minerals.

©Dr. Jeremy Burgess/Science Source

Clicker question \#3

The cross section shown at right comes from
A. eudicot root.
B. eudicot stem.
C. monocot root.
D. monocot stem.

Clicker question \#3, solution

The cross section shown at right comes from
B. eudicot stem.

22.3 Mastering concepts

Describe the internal anatomy of a stem, leaf, and root.

Plants have flexible growth patterns

T A B L E 22.3 Meristem Types: A Summary
Some plants never stop growing. These plants have indeterminate growth.

Plants that stop growing when they reach their mature size have determinate growth.

Meristems

Plants grow by adding units, or modules, consisting of repeated nodes and internodes. Growth occurs at meristems, regions of active cell division.

Apical meristems

Apical meristems produce

 tissues that lengthen the tips of shoots and roots.

Primary growth

Primary growth occurs at the apical meristems. New cells can differentiate into any tissue type.

Intercalary meristems

Intercalary meristems occur at the base of a leaf blade. Grasses tolerate grazing because they have intercalary meristems that regrow a leaf from its base when the tip is munched off.

Secondary growth

Secondary growth thickens

 roots and stems; this growth occurs at lateral meristems.

Secondary growth in woody plants

Secondary growth occurs in woody plants. Two types of lateral meristems produce wood and bark:

- Vascular cambium
- Cork cambium

Vascular cambium

The vascular cambium (highlighted green) produces secondary xylem toward the inside of the stem and secondary phloem toward the outside.

Wood

Secondary xylem is more commonly called wood.

(b): ©Siede Preis/Getty Images RF; (c): ©Herve Conge/Phototake

Rays

The vascular cambium also produces rays (highlighted with yellow), bands of parenchyma that extend from the center of the stem or root and transport nutrients laterally.

Bark

Secondary growth produces bark, a collective term for all

a. tissues outside of the vascular cambium.

Cork cambium

The cork cambium (highlighted white) produces parenchyma cells toward the inside and dense, waxy cells called cork toward the outside.

Cork is the outer protective layer of bark.

Periderm

Together, the cork cambium, parenchyma cells, and nonliving cork make up the periderm, a protective layer that covers a woody stem or root.

(b): ©Siede Preis/Getty Images RF; (c): ©Herve Conge/Phototake

Heartwood

Secondary xylem eventually becomes unable to conduct water, forming heartwood.

(b): ©Siede Preis/Getty Images RF; (c): ©Herve Conge/Phototake

Sapwood

The lighter sapwood transports water and dissolved minerals.

(b): ©Siede Preis/Getty Images RF; (c): ©Herve Conge/Phototake

Tree rings

Tree rings arise from alternating moist and dry seasons. Wood that forms in the spring has larger cells than wood that forms in the summer.

(b): ©Siede Preis/Getty Images RF; (c): ©Herve Conge/Phototake

Clicker question \#4

If you have ever used a microscope to study cells undergoing mitosis, you may have examined onion root tips. Why are root tips ideal specimens?
A. They contain lots of rapidly dividing cells.
B. They carry out photosynthesis.
C. They have root hairs that absorb water.
D. They don't require O_{2}.
E. They don't contain vascular tissue.

Clicker question \#4, solution

If you have ever used a microscope to study cells undergoing mitosis, you may have examined onion root tips. Why are root tips ideal specimens?
A. They contain lots of rapidly dividing cells.

22.4 Mastering concepts

What are the locations and functions of meristems?

Investigating life: an army of tiny watchdogs

In some plants, evolution has selected adaptations in anatomy that benefit ants.

©Dr. Morley Read/Science Source

A mutualistic relationship

The ants make their homes in hollow stems called domatia. The ants also eat the nectar of the plant's young leaves.

©Dr. Morley Read/Science Source

The ants protect the tree

How does the tree benefit from the ants' presence?

Protection. Trees with ant residents sustained less damage by intruders than trees without ant residents.

