Balancing Equations - PhET Simulator <u>Instructions</u>: Open the *Balancing Chemical Equations* simulator via the PhET website or app. Choose the "Introduction" option. Choose the Bar Graph on the top-right corner in "Tools." At the bottom of the page, choose the Make Ammonia option. - 1) In the equation, is N₂ considered a **reactant** or a **product**? - 2) In the equation, is NH₃ considered a **reactant** or a **product**? - 3) **Balance** the equation using the simulator. Write the balanced coefficients below. $$\underline{\hspace{1cm}}$$ N₂ + $\underline{\hspace{1cm}}$ H₂ \rightarrow $\underline{\hspace{1cm}}$ NH₃ 4) In the spaces below, draw the particles representing the **balanced equation**: - 5) A bar graph is displayed above the particle diagrams. What do these bars tell us? (Choose the **Bar Graph** in the "**Tools**" menu if you haven't already) - 6) In the "Tools" menu, choose the Scale icon. What does the scale tell us? - 7) The **Law of Conservation of Mass** states that the **mass of the** _______. | At the bottom of the page, choose the <u>Separate Water</u> option. | |---| | 8) In the equation, is O ₂ considered a reactant or a product ? | | 9) In the equation, is H ₂ O considered a reactant or a product ? | | 10) Balance the equation using the simulator. Write the final coefficients below. | | $\underline{\hspace{1cm}} H_2O \rightarrow \underline{\hspace{1cm}} H_2 + \underline{\hspace{1cm}} O_2$ | | 11) In the spaces below, draw the particles representing the balanced equation : | | | | At the bottom of the page, choose the <u>Combust Methane</u> option. | | 12) In the equation, is CO ₂ considered a reactant or a product ? | | 13) Balance the equation using the simulator. Write the final coefficients below. | | $__CH_4 + __O_2 \rightarrow __CO_2 + __H_2O$ | | 14) In the spaces below, draw the particles representing the balanced equation : | | | | Choose the $\underline{\text{Game}}$ option, then choose $\underline{\text{Level 1}}$. Write each balanced equation below. | | | |---|--|--| | 1) | | | | 2) | | | | 3) | | | | 4) | | | | 5) | | | | | | | | Choo | se " <u>Level 2</u> ." Write each completed and balanced equation below. | | | 1) | | | | 2) | | | | | | | | 3) | | | | 4) | | | | 5) | | | | | | | | Choose "Level 3." Write each completed and balanced equation below. | | | | 1) | | | | 2) | | | | 3) | | | | 4) | | | | , | | | | 5) | | | Name _______ Period _____ ## **Balancing Equations - Problems** Instructions: Balance the chemical equations below. 1) $$\longrightarrow$$ CH₂O + \longrightarrow H₂ \longrightarrow CH₃OH 2) $$\longrightarrow$$ NH₃ \longrightarrow \longrightarrow N₂ + \longrightarrow H₂ 3) $$C_2H_6 \rightarrow C_2H_4 + M_2$$ 4) $$N_2 + M_2 O_2 \rightarrow M_2 O_2$$ $$5) \quad \underline{\hspace{1cm}} CO \rightarrow \underline{\hspace{1cm}} C + \underline{\hspace{1cm}} CO_2$$ 6) $$C_2H_2 + M_2 \rightarrow C_2H_6$$ 7) $$CS_2 + CO_2 \rightarrow CO_2 + SO_2$$ 8) $$__CH_4 + __H_2O \rightarrow __H_2 + __CO$$ 9) $$M_2 SO_2 + M_2 M_2 \rightarrow M_2 S + M_2 O$$ 10) $$__CH_4 + __S \rightarrow __CS_2 + __H_2S$$ 11) $$CO_2 + M_2O \rightarrow C_2H_6 + M_2O$$ 12) $$MO_2 + M_2O \rightarrow MH_3 + MO_2$$